глюкоза // Tag

Tag based archive
14 ное.

Кето телата или просто кетоните са вещества, произведени от черния дроб по време на глюконеогенеза, процес, който създава глюкоза по време на гладуване и глад.

04 авг.

Гликемичният индекс е инструмент, използван за измерване на скоростта, с която въглехидратната захар навлиза в кръвта. Въглехидратните храни са сладки (бонбони и сладки), но също така всички плодове, зеленчуци, зърнени храни, варива и млечни продукти.

04 ное.

Видове въглехидрати и структура

Въглехидратите са химични съединения, съдържащи елементите въглерод, водород и кислород. Затова понякога се наричат и “въглеводи” (от “въглерод” и “вода”). Според своя състав въглехидратите се разделят на прости (монозахариди) и сложни (полизахариди).

Простите имат общото название “захари”. Всъщност те биват монозахариди и дизахариди. Монозахаридите са с обща формула С6 Н12 О6. Такива са глюкозата (гроздовата захар) и фруктозата (плодовата захар). Дизахариди са захарозата (цвекловата захар) и лактозата (млечната захар). Сложните въглехидрати се състоят от много монозахариди (стотици, дори хиляди). Полизахариди са нишестето (скорбялата) и целулозата (влакната). Повече за въглехидратите като макронутриенти, вижте тук.

Монозахариди

Глицералдехид

Монозахаридите притежават определен брой алкохолни групи и една алдехидна или кетонна група, според което се разпределят на алдози и кетози. Освен това, според броя на въглеродните им атоми, те се делят на триози (3 C), тетрози (4 С), пентози (5 С), хексози (6 С) и други.

По-важните за нас, като знания и фокус обаче пентози са две: рибоза и дезоксирибоза. Те участват в структурата съответно на рибонуклеиновите (РНК) и дезоксирибонуклеиновите (ДНК) киселини. А най-разпространени хексози са глюкозата, фруктозата, манозата и галактозата. От техните формули става ясно, че имат еднакъв химичен състав: C6H1206, но са с различна химична структура и строеж. Така глюкозата притежава при първия си въглероден атом алдехидна група и следователно е алдохексоза.

Фруктозата пък е кетохексоза – при втория си въглероден атом притежава кето група. Това води и до значителни различия в свойствата им. Трябва да отбележа, че при всички хексози алкохолната група при техния въглероден атом задължително има лява конфигигурация.

Рибоза-и-Десоксиризоба

В организма обаче, споменатите хексози фукционират в своите конфигурации. При това, често пъти и като фосфатни естери на други производни съединения. Аминирането на C2 води до нови производни – в моя пример до глюкозамин (добре познат като основен участник в продукт за стави и връзки, под формата на хранителна добавка) и галактозамин:

Глюкозамин

Както ще стане ясно малко по-надолу, глюкозата лесно се превръща във фруктоза! Това става чрез редукция на алдехидна група (с участието на НАДФ.Н2 и ензима алкозоредуктаза) и се получава 6-атомен алкохол сорбитол, който след окиселение на алкохолната му група при С2 до кетонна, се превръща във фруктоза.

Дизахариди

Дизахаридите са два свързани монозахарида, чрез кислороден мост. Тази връзка се нарича гликозидна връзка. Лактозата се нарича още млечна захар, тъй като се среща единствено в млякото (в краве млякото се съдържа около 3,5% лактоза). Захарозата е ежедневно употребявана от нас – това е обикновената захар. Тя няма редуциращите свойства, тъй като представялва глюкозидо-фруктозид, получен чрез свръзване на редуциращите групи.

Полизахариди

Полизахаридите, и по-специално тези, които са съставени само от глюкозни остатъци са главно 3 вида:

  • целулоза
  • нишесте
  • гликоген

Дизахариди

Целулозата е линеен (неразклонен) полимер на глюкозата, има фибриларна (нишковидна) структура и поради особеността на кислородните мостове свързващи отделните глюкозни остатъци, не се смила от чревните ензими на човека. Целулоза се съдържа в растителната храна. Ползата от нея е в това, че тя регулира перисталтичната дейност на червата, както и че адсорбира някои вещества (например холестерола), с което намалява резорбцията им. Храни богати на целулоза са овесените трици, зърнените храни като цяло, варивата, марулите, зеле, както и в плодовете.

Нишестето (amylum) е най-силно застъпения въглехидрат в храната ни. Съдържа се като главна съставка на брашното (хляб, тестени изделия). Така средно около 45% от теглото на хляба се пада на нишестето. Нишестето е полизахарид, изграден от стотици глюкозни молекули, свързани било в линейни полимери (амилоза), било в разклонени такива (амилопектин), но и двата са с еднаква хранителна стойност.

Гликогенът не представлява хранителен полизахарид. Той се съдържа в живите клетки и то главно в чернодробните и мускулните. Количеството му достига до 4-6% за черния дроб и до 1-2% за мускулите. Гликогенът е резервен глюкозен полимер с гиганткси размери – с молекулна маса до няколко милиона и съставен от десетки хиляди глюкозни молекули.

Гликоген

Молекулите на гликогена, както виждате от картинката, са разнородни – по-големи и по-малки, събрани вътре в клетките като гликогенови капки или зрънца, както ги наричам още. Структурата на гликогеновия полимер е силно разклонена – със стотици или даже хиляди разклонения. Причината за това е следната: когато е необходим бърз приток на глюкоза, то всички краища на молекулата започват да отделят едновременно хиляди глюкозни молекули за задоволяване на възникналите в момента енергийни нужди. Ако молекулата на гликогена беше линейна (неразклонена), то тя щеше да отделя само по една молекула глюкоза от единия си край. Вътре в самите вериги връзките са C1-C4 глюкозидни, а при разклоненията са C1-C6 гликозидни.

Хетерополизахариди

Споменатите по-горе полизахариди са изградени от еднакви монозахариди. Всички те обаче за полизахариди. Хетерополизахаридите са изградени също от много монозахариди, но различни сами по себе си. От различни комбинации от по две монозахаридни единици. В повечето случаи с допълнителна химична група.

Така, гликозамингликаните съдържат редуващи се дизахаридни комбинации от глюкоронова киселина и N-ацетилгалактозамин, т.е. глюкозамин с ацетилирана аминогрупа. Такава е структурата на хиалуроновата киселина, с молекулна маса над 1 милион. Хондроитинсулфатите съдържат дизахаридна комбинация от глюкоронова киселина и N-ацетилгалактозамин, като последния е сулфатиран.

Сиаловите киселини представляват N-ацетилови производни на невраминовата киселина. Те са широко разпространени в тъканите като мукопротеини или свързани с висши мастни киселини като гликолипиди(ганглиозиди) и др. Производните на N-ацетилневраминовата киселина се срещат в слузта, както и в мемраните на редица клетъчни типове, даже бактерии и вируси (например грипните вируси). Хепаринът (широко използван противосъсирващ агент) е изграден от комбинация на глюкозамин и идуронова киселина.

Биологична функция на въглехидратите

Енергийна фунцкия

Въглехидратите като хранителен източник, са основен доставчик на енергия. 1 грам въглехидрати доставя при окислението си 4.4 ккал енергия, а дневното поемане на въглехидрати е около 250 грама за деня. Достига и до 350 грама, в зависимост от теглото на човек. Делът на доставената енергия възлиза на около 55% (докато при белтъците и мазнините, взети заедно, доставят останалите 45%).

Резервна фунцкия

Резервната функция на въглехидратите се изпълнява от гликогена. основните депа (резервоари) на гликоген са мускулите (от 300 до 600 грама) и черния дроб (от 80 до 150-200 грама). ДОкато мускулният гликоген се използва само вътре в мускулите при физически натоварвания например, то чернодробния гликоген е доставчик на глюкоза, която по кръвен път достига до всички органи и по-специално до мозъка. Т.е. – мозъка се храни с глюкоза от чернодробния гликоген!

Пластична (градивна) фунцкия

Въглехидратите взимат участие в изграждането на всички клетки и клетъчни органели. Например: рибозата и дезоксирибозата участват в структурите на РНК и ДНК – молекулите на наследствеността. В различните клетъчни мембрани, въглехидратите участват и са вградени като гликолипиди. Основното междуклетъчно вещество, изграждащо хрущялната тъкан и костната тъкан съдържа различни видове хондроитин сулфати. Те заедно с хиалуроновата киселина, изграждат стъкловидното тяло на окото. Гликозамингликаните пък вземат участие в състава на различните видове защитни секрети (слуз), които се отделят от жлезите на лигавицита на редица органи: уста, хранопровод, стомах, черва, бронхи и др. Гликозамингликаните участват и в в състава на различни смазочни материали – лубриканти. По тази причина, продукти съдържащи глюкозамин и хондроитин, се и ще се използват много при приложение на ставни и хрущялни проблеми при човека.

Защитна фунцкия

Редица олигозахариди под формата на къси разклонени верижки са вградени в клетъчните мембрани така, че стърчат над тяхната повърхност. По този начин те служат като химични опознавателни знаци (антигени), чрез които клетките в един и същ организъм се опознават помежду си или пък бързо откриват проникналите отвън чужди клетки – например бактериални инфекции.

Обратно към раздел „Анатомия и физиология“

Магазин-Белчо-Христов-Хранителни-добавки-Варна

08 сеп.

Инсулинът е хормон, който се произвежда от панкреаса (задстомашна жлеза). Той е с хипогликемично действие, противоположно на това на епинефрина, глюкокортикоидите и растежния хормон, които повишават нивото на кръвната захар и се означават като контраинсуларни хормони.

Инсулинът повишава отлагането на липиди в мастната тъкан, понижава концентрацията на свободните мастни киселини и инхибира метаболизма на белтъците, способства за усвояване на глюкозата от клетките на тъканите, по-специално в черния дроб и мускулите като всичко това води до и превръщането й (на глюкозата) в гликоген.

Инсулинът е единственият хормон в организма, който понижава нивото на кръвната захар. При недостиг на инсулин в организма настъпва болестно състояние – диабет. Инсулинът е открит в началото на 20 век от румънския д-р Николае Паулеску в Париж (нарича го панкреатин), но до 2004 г. заслугата за откриването му са приписвани на канадеца Фредерик Бантинг, който пръв е инжектирал инсулин на човек.

Инсулинът представлява протеинов хормон с молекулно ниво на мономера 6000. Съставен е от 5 вида химически елемента:

    • въглерод (C) – 53.8%
    • кислород (О) – 21.7%
    • азот (N) – 14.3%
    • водород (H) – 6.4%
    • сяра (S) – 3.2%

Като любопитен факт, свързан с физико-химичните му свойства, ще спомена, че инсулина може да изкристализира в подходяща среда, в чийто случай съдържа и цинк (Zn) в количество 0.3%.

Един от най-важните хормони, който трябва да регулирате чрез ествествени механизми (хранене, лайфстайл и т.н.), за да имате фитнес визия и крепко здраве, това е инсулинът! Този хормон, основно се дискутира и разглежда в теми като диабета например и тук аз ще го разглеждам като хормон, който насочва глюкозата в мускулите. Т.е. хормон с изцяло анаболна функция за човешкото тяло.

Биосинтез, складиране, секреция, транспорт и екскреция на инсулин

Инсулинът, като диетолог и уелнес консултант, аз го разглеждам като изцяло функционален хормон. А като фитнес треньор – с действие, подобно на растежния хормон. Повтарям – подобно. С други думи, използвам функционалността му, чрез диетата и действието му, за да работя в полза на визията на телата на моите фитнес клиенти и дори болните от диабет, които не искат:

  • замаяност
  • глад
  • хипогликемия
  • умора
  • депресия

Биосинтезата на инсулин най-вероятно се осъществява по схемата за синтезиране на протеини изобщо. Има данни, че в тези случаи, необходимите аминокиселини се активират и пренасят от РНК до рибозомите на клетката, където се свързват с РНК , за да се подредят в определен ред и се свържат полипетидните вериги А и Б (виж схемата по-горе) на инсулина.

Освен, че инсулинът увеличава усвояването на хранителните вещества, мускулната хипертрофията и подкожната мазнина, инсулинът има и други функции. Те са значително по-малко известни:

  • инсулинът отпуска мускулите на кръвноносните съдове, карайки ги да се разширяват, а така до мускула достига повече глюкоза, амоникиселини и други вещества.
  • инсулинът оказва роля и върху дълголетието! Учените откриха, че когато нивото му се поддържа ниско, (използвани за изследването са различни животни) с 50 % се увеличава продължителността на живота! Механизмът на този антиостаряващ ефект не е точно установен, но се предполага, че постоянното сигнализиране на клетките от инсулина (вижте още веднъж видеото) с времето разбива здравето им и скъсява дълголетието. Поддържайки нивото му ниско и умеейки да манипулирате инсулина ще усвоите част, ако не и всичките похвати за по-дълъг живот!

Инсулинът насочва глюкоза в три направления:

  • към мастните клетки – в тях инсулина засилва усвояването на глюкоза и мазнини, което е причина тялото да отлага повече мазнина.
  • към кръвоносните съдове – инсулина подтиква мускулите на кръвоносните съдове към отпускане, което причинява разширяването им и така до мускулите на тялото достига повече кръв.
  • към мускулите – в мускулните клетки инсулина подобрява усвояването на глюкозата и аминокиселините и стимулира синтеза на протеин!

Отделно, инсулинът намалява разграждането на мускулна тъкан, стимулирайки по този начин растежа. А как може инсулина да е вреден за нас? Ами, ако позволим, глюкозата да навлезе в мастните клетки – видяхте, това е един от 3-те варианта и пътища, нали? Когато инсулинът се синтезира от панкреаса, той отделя сигнал, който казва на тялото, че току що е било захранено. Тъй като винаги се опитва да пести енергия, то спира да гори отложените мазнини и се насочва към хранителните вещества, които току що са били приети.

И когато инсулинът влезе в мастните клетки, увеличава усовяването на глюкозата и мазнините и кара тялото да отлага повече мазнина! Неприятно, но вероятно се е случило поне веднъж във вашето тяло. Високото ниво на инсулин е вредно поради още една причина – когато нивото му се покачи, той (инсулина) избутва по-голямата част отр глюкозата в кръвообръщението на мускулните и мастни клетки. Това предизвиква рязък спад на глюкоза в кръвта – хипогликемия. В резултат на това енергята ви пада, тъй като гладът се засилва и ви кара да преяждате, особено с въглехидрати.

Виждате, инсулинът представлява много активен в биологично отношение хормон. Пряко или косвено, той повлиява изхода на много биохимични реакции. Определя главните роли в равитието на обменните процеси (затова се разглежда и като най-анаболния хормон в човешкото тяло). Може спокойно да се каже, че няма област на метаболизма, в която да не е намесен инсулина и неговото регулиращо влияние.

Биологическият ефект на инсулина в най-общ смисъл е анаболичен, насочващ обменните реакции на клетката към процеси на синтез и складирване на по-сложни и богати на енергия съединения. Острият или хроничния инсулинов дефицит има за резултат активиране на катаболните процеси и отпадане на редица синтетични функции в клетките. Всичко това определя инсулина като основен и важен регулатор на обмяната на веществата, без който живота е немислим.

Най-добре проучен е ефектът на инсулина върху въглехидратната обмяна. Той стимулира оксидацията на глюкозата и в двата цикъла – гликолитичния и пентозния. Катализира синтезата на гликоген и олигозахариди в тъканите и съдейства за освобождаването и използването на химическа енергия, акумулирана във въглехидратите. Този ефект на хормона инсулин е налице по време на хипогликемия през период, когато самата инсулинова инфузия поддържа хипогликемия, когато последната е компенсирана с трайна инфузия на глюкоза и при състояние на хипергликемия.

Инсулинът съдейства за образуване и доставяне на редица продукти, абсолютно необходими за нормалното протичане на междинната обмяна – пирогроздена киселина, фосфоенолпирогроздената киселина, НАДФ-Н2 и други.

Ефект на инсулина върху мастната обмяна

Установено е със сигурност биологическото влияние на инсулина върху мастната обмяна на веществата. Той като хормон, стимулира синтеза на мастни киселини и масти, като за това са необходими малки дози от хормона. Но все още се дискутира дали ефекта на инсулина върху мастната обмяна е първичен или вторичен резултат.

Ефект на инсулина върху протеиновата обмяна

протеиносинтетичното действие на иснулина е доказано и играе голяма роля в начина, по който този хормон повлиява метаболизма на организма.

Ефект на инсулина върху междинната обмяна

Това е вторичен процес и зависи от намалената доставка на продукти от гликолитичния цикъл, поради недостатъчна оксидация на глюкозата.

Ефект на инсулина върху електролитната и водна обмяна

Инсулина има въздействие върху фосфорната обмяна и се свързва с въглехидратната обмяна. При понижение на кръвната захар паралелно намалява и органичния фосфор в кръвта, а се увеличава този в клетките. Инсулинът въздейства и върху върху количеството серумен калий, като го излтасква към вътрешността на клетката (главно в мускулите) и понижава нивото му в кръвта. Паралелно с това е намалено задържането на натрий в тъканите. Точно заради това се увеличава водната задръжка в тъканите.

Ефект на инсулина върху обмяната на някои органи

Инсулинът играе роля в обмяната на вещества в черния дроб. Всичко тук се свързва с гликогеновата синтеза, липосинтеза, кетогенеза, неоглюкогенеза и уреосинтезата. Глюкозата преминава свободно през клетъчната мембрана на чернодробните клетки. При инсулинов дефицит е намалена именно глюкозната утилизация (оползотворяване), увеличава се глюкозния дебит, намалява количеството чернодробен гликоген, понижава се синтеза на мастни киселини и протеин, увеличава се продукцията на кетотела.

Ефект на инсулина върху обмяната в скелетната мускулатура

Инсулинът усилва утилизацията на глюкозата, синтезата на гликоген и олигозахариди, инкорпирането на аминокисели в протеини, а подтиска липозата, доколкото тя съществува в този вид тъкан.

Ефект на инсулина върху други структури и тъкани

    • Мастната тъкан се отличава с най-голяма чувствителност спрямо инсулина. Тук ефектът му е изразен главно върху липосинтезата и подтискането на липолизата.
      • В лактираща и нелактираща млечна жлеза, инсулинът оказва почти целия комплекс от въздействия. Инсулинът също така усилва утилизацията на на глюкоза в

    левкоцитите

      .
    • Очната леща също е много чувствителна към инсулин.
  • Кръвно-ликворната бариера е също чувстителна към инсулин и въздействието му, което е основно фокусирано в посока пропускливостта на глюкозата.

Инсулинът въздейства и влияе върху мозъчната дейност, бъбречната тъкан, тънките черва и други структури на човешкото тяло.

Механизъм на действие на инсулина

1. Стимулиране на трансмембранният транспорт

Инсулинът продвижва (пренася) глюкозата и структурно сходните (аминокиселините) с нея захари от екстрацелуларната към интрацелуларната среда. По този начин се улеснява достъпът на захарите към метаболизиращите я ензимни системи, разположени в цитоплазмата. Това стимулира глюкозната утилизация и всъчки свързани с нея метоболитни процеси.

2. Стимулиране на ензима хексогеназа и други ензимни системи

Ефекта на инсулина върху хексогеназата не е пряк, а косвен. Той се изразява в отстраняване инхибиторния ефект на този ензим върху хипофизата и надбъбречната кора.

3. Стимулиране на протеин синтезата

Това е основния механизъм на действие на инсулина. Стимулирането на протеинсинтезата и инкорпорирането на аминокиселини в белтъци представлява със сигурност доказан ефект на инсулина и не зависи от ефекта му върху въглехидратната обмяна. Затова този хормон се разглежда като най-анаболния хормон в човешкото тяло – и за жената и за мъжа.

Обратно към раздел „Анатомия и физиология“.

16 ян.

Често ме питат “Какъв плод да ям Белчо?”. Като че ли плодовете не са получили уважението, което заслужават. Много хора отказват плодовете, заради страха от фруктозата. Разбира се, в голямо количество фруктозата може да претовари гликогеновите депа на черния дроб и мускулите и да се отложи като телесна мазнина.

11 дек.

Пируват е вещество, което се произвежда ежедневно в тялото ни при смилането на въглехидратите (захарите и нишестето). Освен това се съдържа в доста храни, разнородни по състав. Ето някои от тях: ябълки, сирене, бира, червено вино. За направата на препарат, пируватът се получава от киселина, която по принцип е нетрайна. Ето защо препаратите на основата на пируват са с малък срок на годност. Или казано по-кратко – Pyruvate подпомага транспорта на глюкозата и протеина до мускулните клетки, където те се изгарят и осигуряват енергия.

Основни функции

Изследванията показват, че пируватът стимулира топенето на подкожните мазнини, като ускорява процеса на изгарянето им с 40%. Едновременно с това произвежда енергия и улеснява вашите тренировки, като ускорява преноса на глюкоза и белтъчини до мускулните клетки. Освен това значително повишава издръжливостта. Действа, като увеличава количеството на АТФ (аденозин трифосфата) в митохондриите и потиска синтезата на мазнини. Пируватът помага на фитнес трениращите да стопят тлъстините без да губят от тонуса и енергията си. За да се установи ефективността на пирувата, в университета в Питсбург е направен следният експеримент: две групи жени, болни от затлъстяване, са подложени на лечение с еднаква диета от 1000 ккал. На едната група се дава 30 грама пируват дневно в продължение на 3 седммци. Ето и резултатът: жените от групата, приемаща пируват, губят 40% повече мазнини, отколкото групата без пируват. След преминаване към нормална диета жените с пирувата възвръщат малка част от теглото си, а тези, неупотребяващи пируват възстановяват значителна част от първоначалните си килограми. С това се доказва, че пируватът стимулира топенето на тлъстините. Според изследователите той навлиза лесно и бързо в почти всички клетки от нашето тяло.

Нашият организъм произвежда пируват по естествен път всеки ден по време на обмяната на веществата или смилането на захарите и нишестето. Пируватът е съединението, което стартира цикъла на Кребс – верига от реакции, в която става пълно разграждане на пируватна киселина до СО2 и Н2О, при което се отделя енергия за нуждите на клетката. Пируватът стимулира топенето на подкожните мазнини, като ускорява процеса на изгарянето им. Оказва феноменален ефект при намаляване на теглото, като едновременно с това е и източник на енергия за по-добро представяне при физическо натоварване, като ускорява преноса на глюкоза и белтъчини до мускулните клетки.

Начин на употреба

Най-добре е приемането на пируват да се съчетае с намаляне на калориите във вашата диета. Намалете калориите с 10-15%, за да улесните изгарянето на мазнините. Все още оптималната доза не е точно установена, но се приема, че най-добре е да вземате по 1 грам пируват на 5 кг тегло. Например, ако тежите 80 кг се нуждаете от 16 грама пируват на ден (80 делим на 5 = 16).

Странични ефекти

Пируватът няма сериозни странични ефекти. Такива могат да се наблюдават при значително превишаване на необходимите дози (5 и повече пъти). Изразяват се в образуването на газове и стомашни разстройства. Друг „недостатък“ на пирувата е, че е необходим в сравнително големи количества (за разлика от карнитина например). Поради това препаратите на основата на пируват могат да ви излязат скъпички. Но виждате при какви концентрации работят. Подобно на случая с л-карнитина.

Обратно към раздел „Добавки“.

20 дек.

Ванадил сулфат притежава инсулиноподобно действие – нормализира нивата на кръвната захар, активира мускулния растеж и развитие, намалява умората и поддържа анаболните функции в тялото.

Архив